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1. Introduction

It has been a long struggle to describe the gravitational interaction in terms of a gauge

theory in the Yang-Mills sense. Up to now the results appear to be very dissimilar in

odd and even dimensions. While odd dimensional Lovelock theories [1] can be used to

construct gauge theories of gravity, that, moreover, have a topological interpretation using

Chern-Simons (CS) forms [2, 3]. Even dimensional Lovelock theories appear to not be

embeddable in topological structures.

However, it does exist the Mac Dowell-Mansouri [4] and Chamseddine-West [5] pro-

posal (with the subsequent Stelle-West improvement [6]) to construct a gauge theory for

(super) gravity a la Yang-Mills (in the sense that one of the relevant objects in the con-

struction is a Lie algebra valued connection). This construction is elegant, somewhat

reminiscent of having a topological origin and have received some considerations through

the years (see for instance [7, 8]).

On the other hand it has been pointed out that due to the natural connection between

Chern-Simons forms and gauged Wess-Zumino-Witten (gWZW) terms [9, 10] they should

correspond to even dimensional gauge theories of gravity. Since the above approach and

the Chamseddine-Mac Dowell-Mansouri-Stelle-West (CMMSW) one contains similar in-

gredients, namely some 0-form fields and a gauge connection, it could be expected that

they should share some similarity. In fact, as is explicitly shown in this paper, they coincide

when the non linear sigma model of the gWZW is accordingly restricted.

The structure of this paper is as follow: first Lovelock theories and CS theories of

gravity are briefly recasted, then the gWZW structure is recalled and its properties are

analyzed, the Unitary gauge is studied and implemented and finally it is shown that a

consistent restriction of the gWZW theory exactly corresponds to the Stelle-West version

of the CMMSW theory.
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2. The Lovelock series

A satisfactory description of nature is always accompanied by a reduced number of as-

sumptions. The main difficulty to reduce the number of assumptions is that most of the

times they are difficult to identify, and even after identifying them it would be far from

obvious how, in a sensible way, relax them. Of course, these kind of considerations are

relevant when there is at hand a theory that has been proved to be physically sensible;

something that for the gravitational field, as described for the Einstein field equations

Rµv −
1

2
gµvR + Λgµv = 8πGTµv , (2.1)

is supported by the experimental success associated with the description of the primordial

nucleosynthesis, the binary pulsar and of the solar system tests [11].

All this evidence, indeed suggests that the identification of the minimal set of assump-

tions that implies (2.1), is a physically relevant question. Luckily mathematicians think

in uniqueness faster than physicists, and Vermeil (1917), Weyl (1922) and Cartan (1922)

showed (see [1] and references therein) that it is possible to single out the l.h.s. of (2.1), in

every dimension, by asking

• A rank two, symmetric tensor

• Covariant divergenceless.

• Any derivative is at most second order and the tensor is linear in them.

While the first two assumptions are motivated by what should appear at the r.h.s. of

the Einstein tensor, and in fact are trivial if one begins with an action principle instead

of with field equations, the third is not so. As was pointed out by Lovelock (1971) [1] it

is possible to relax linearity to quasi-linearity in the second derivatives (for a discussion

of quasi-linearity in this context see [12]). Remarkably, this relaxation still implies that

in four dimensions the only possibility are the Einstein field equations, while, in higher

dimensions, gives rise to the Lovelock series.

A nice pattern that governs the Lovelock series is given by the generalization of the

relation between the Hilbert action and a two dimensional topological invariant. The

Hilbert action is a non-trivial functional for the metric in all dimensions higher than two,

while in two dimension it becomes a boundary term known as the Euler density. The

Euler characteristic (the integral of the Euler density) is a number associated to a family

of manifolds that can be related by homotopies. It exist in all dimensions, however it

can be related with differentiable, geometrical features of the manifold only if it is even

dimensional, in which case is given by the integral of

2
√

|g|

4!4V OL(S4)
δ
µvλρ
αβγδR

αγ
µvR

λδ
λρ,

2
√

|g|

6!6V OL(S6)
δ
µvλρητ
αβγδσζR

αγ
µvR

λδ
λρR

σζ
ητ , . . . (2.2)

where the quadratic term in the curvatures correspond to the four dimensional case and

the cubic to the six dimensional, the pattern in any dimension follows from the above

expression.
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Any term of this series is: identically zero if the number of curvatures that it contains,

p, and the space-time dimension, D, is such that 2p > D, does not contribute to the

dynamics but are non trivial if D = 2p, and gives rise to a term of the Lovelock series

if 2p < D. This relation makes people call the terms in Lovelock series the dimensional

continuation of the Euler density. Thus, the Lovelock series in dimension D contains
[

D+1

2

]

terms, where [· · · ] denotes the integer part. The terms are the dimensionally continued

Euler densities of all dimensions below D, and the cosmological constant term.

Despite the condensed notation used in (2.2), is possible to note that the terms that

can be added to the Lovelock Lagrangian increase its complexity with the dimension. For

instance the cubic one is proportional to [13]

2RαβγδRγδλvR
λv

αβ + 8Rαβ
γδR

γλ
βvR

δv
αλ + 24RαβγδRγδβvR

v
α (2.3)

− 3RRαβγδRαβγδ + 24RαβγδRαγRβδ + 16RαβRβγRγ
α − 12RRαβRαβ + R3.

One equation is better than one thousand words, so the previous one is enough to

be convinced that a change in the notation is necessary to gain insight in the Lovelock

theory. To this end is necessary to introduce the vielbein, ēa
µ, an isomorphism between the

coordinate tangent space and the non-coordinate one defined by the relation ēa
µēb

vηab = gµv

where ηab = diag (−,+, . . . +).Using this isomorphism, the curvature two form

Rab ≡
1

2
Rab

µvdxµ ∧ dxv ≡
1

2
ēa
αēb

βRαβ
µvdxµ ∧ dxv,

and the torsion two form

T a ≡
1

2
T a

µvdxµ ∧ dxv ≡
1

2
ēa
γT γ

µvdxµ ∧ dxv

can be defined. They are related by means of the spin connection, ωab ≡ ωab
µ dxµ, through

the identities

T a ≡ dēa + ωa
b ∧ ēb ≡ Dēa, Rab ≡ dωab + ωa

c ∧ ωcb, DT a = Rab ∧ ēb. (2.4)

Furthermore, using the convention that the wedge product (∧) is assumed between

forms, the Euler characteristic can be rewritten as the integral of

2

4!V OL(S4)
εabcdR

abRcd,
2

6!V OL(S6)
εabcdefRabRcdRef , . . . (2.5)

With this notation and the torsionless condition, Dēa = 0, the Lovelock Lagrangians in

four, five, six and seven dimensions can be written as

L4 = εabcd

(

α0ē
aēbēcēd + α1ē

aēbRcd
)

,

L5 = εabcde

(

α0ē
aēbēcēdēe + α1ē

aēbRcdēe + α2ē
aRbcRde

)

,

L6 = εabcdef

(

α0ē
aēbēcēdēe + α1ē

aēbRcdēe + α2ē
aRbcRde

)

ēf ,

L7 = εabcdefg

(

α0ē
aēbēcēdēeēf + α1ē

aēbRcdēeēf + α2ē
aRbcRdeēf + α3R

abRcdRef
)

ēg.
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Where the α are dimensionful, arbitrary, coupling constants: α0 is proportional to the

cosmological constant, α1 is related with the Newton constant while the remaining coupling

constants are related to the strength of its accompanying Lovelock term. This implies that

the most general Lovelock Lagrangian has
[

D+1

2

]

coupling constants, something that would

ruin any possible interpretation of it as a fundamental theory.

2.1 Chern-Simons theories

In the early eighties a related story, begun to evolve. A deep insight was being obtained

on background independent field theories; since all the fundamental interactions needs

the existence of a background metric to be defined, background independence was mainly

associated to the requirement that the metric be a dynamical field. However, background

independent field theories can also be constructed beginning with no metric at all, to my

knowledge, this was pointed out to be the case by the first time with CS theories [14].

The lack of the existence of any background field implies a phase space implementation

of diffeomorphism invariance, that makes the CS theories similar to General Relativity

(GR), and it is in fact the case that, all the classical solutions of GR are contained in a CS

theory [15], this highlighted the possibility of show the exact solubility of the theory [16].

Notably enough, nineteen years after these considerations, the relation between gravity

and CS gravity still is matter of research and apparently is far from being completely

understood [17 – 19].

The CS formulation of 2+1 GR makes the theory explicitly power counting renormal-

izable, this is because it can be reformulated in terms of a single gauge connection,

A =
1

2
AAB

µ JABdxµ =
1

2
ωabJab +

ēa

l
Ja3, (2.6)

where the vielbein is divided by a parameter with dimensions of length, l, in order to

make the one form ēa

l
dimensionless. The generators , JAB , span the SO(2, 2) or SO(3, 1)

algebras depending if the cosmological constant is negative or positive. The Poincaré case

can be obtained by an Inönü-Wigner contraction of any of these cases.

Lets recall how the three dimensional Hilbert action can be rewritten as a CS form

(For a pedagogical review see [20])1

κ

∫

Σ

(R − 2Λ)
√

|g|d3x = κ

∫

Σ

εabcē
a

(

Rbc ±
1

3l2
ēbēc

)

(2.7)

= κl

∫

Σ

εabce
a

(

Rbc ±
1

3
ebec

)

(2.8)

= κl

∫

Σ

〈

AdA +
2

3
A3

〉

+
κl

2

∫

Σ

εabcd
(

eaωbc
)

(2.9)

where in (2.7) the Palatini form of the Hilbert action is written in terms ēa, ωab and

Λ = ∓ 1

l2
. Note that at this point the vielbein, ēa

µ, is an invertible object that defines an

isomorphism between the coordinate tangent space and the non coordinate one. In (2.8)

1〈. . .〉 stands for the invariant symmetric trace in the algebra, 〈JabJc3〉 = εabc.
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the redefinition ē = le was used. In (2.9) both objects, ω and e, are put in the same foot,

making manifest the principal bundle structure of the theory.

The explicit power counting renormalizability motivated the search of a higher dimen-

sional realization of this structure, something done in [2, 22]. CS forms exist in all odd

dimensions, thus further discomposing the connection in analogy with the three dimensional

case (2.6) a particular class of gravities can be found, one that contains higher powers in

the curvature. It was latter realized that this gravities can be supersymmetrized, but due

to the lack of the adequate superalgebras, the supersymmetrization of the CS gravities

with cosmological constant was stopped at dimension seven [21]. Subsequent, exhaustive

work, study most of the possible supersymmetric versions of Chern-Simons gravities [22].

Although the previous work was unrelated with the existence of Lovelock gravity it

gave a hint on how to solve a fundamental problem that it has, namely the large number

of, otherwise arbitrary, coupling constants present in the theory. The relative values of

the
[

D+1

2

]

coupling constants can be fixed by requiring that the local Lorentz invariance,

present in any Lovelock Lagrangian when written in terms of e and ω, enlarge to anti de

Sitter, de Sitter or Poincaré invariance. As was subsequently studied in [3] this enlargement

of the symmetry only occurs in odd dimensions, in which case the Lovelock Lagrangian

can be rewritten as a CS form.

As is discussed in [9, 10] CS theories and gWZW forms are intriscally related, thus,

they define our starting point to construct a gauge theory of gravity in even dimensions.

3. Four dimensional gWZW terms

Seeking an effective lagrangian for pions it was suggested in [23] that a non-diagonally

gauged version of the action principle

S(h,A) = −
κ

10

∫

M5

〈

h−1dh(h−1dh)2(h−1dh)2
〉

+ κ

∫

M4

〈

dhh−1A

(

dA +
1

2
A2

)〉

−
κ

2

∫

M4

〈

dhh−1A

{

(dhh−1)2 +
1

2

[

A , dhh−1
]

}〉

− κ

∫

M4

〈

AAh

(

F + Fh −
1

2
A2 −

1

2
(Ah)2 +

1

4

[

A,Ah
]

)〉

, (3.1)

where

F = dA + AA, Fh = h−1Fh, Ah = h−1Ah + h−1dh. (3.2)

plus a kinetic term for the non-linear sigma model could represent the searched action. In

our perspective, the interest in the action (3.1) is that it is diffeomorphism invariant in

the same sense that Chern-Simons actions are; namely there is no necessity of a metric to

define it. Thus, they are perfectly adapted to describe gravitational theories.

In order to have a gravitational interpretation of (3.1) is necessary to have a gauge

group that contains the Lorentz group so(3, 1), and furthermore in order to have a non-

trivial WZW term one is obligated to consider gauge groups that give rise to a trilinear in-

variant tensor. The smaller algebras that satisfy the above conditions are so(5, 1), so(4, 2),

– 5 –
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so(3, 3), with generators JAB and invariant tensor 〈JABJCDJEF 〉 = εABCDEF . Along the

lines discussed in the introduction, ISO(4, 1), can also be considered.

Let’s recall some of the properties of the previous action: it is invariant under the

adjoint action of the gauge group, namely

A → g−1Ag + g−1dg, h → g−1hg, (3.3)

It can be noted that the action contains only even powers of h, and the invariance

S(h,A) = S(−h,A) (3.4)

follows from this fact.

A first suggestion that this theory could make sense is given by the relation

S(A0, h0) = κ sinh θ0

3

2

∫

M4

εabcde
aeb

(

Rcd + µeced
)

. (3.5)

A0 =
1

2
ωabJab + eaJa5 , h0 = eθ0J45,

µ =
1

2
(1 − cosh(θ0)) (3.6)

where (Jab, Ja5) span the so(3, 2) subalgebra of so(4, 2). However, there is no point to have

a nice construction to later mutilate it in order to obtain a desired result. Instead, if some

condition is going to be imposed on the field content of an action principle, it should, at

least, not modify the local symmetry present in the Lagrangian.

Parametrizing the non-linear sigma model as

h = exp(φ) = exp

(

1

2
JABφAB

)

, (3.7)

and using the Killing metric Tr(JABJCD) = ηACηBD − ηBCηAD
2, the following gauge

invariant condition can be imposed on the φ fields:

Tr(φφ) =
1

4
φABφCD (ηACηBD − ηBCηAD) =

1

2
φACφAC = m2 (3.8)

where m is a constant. Indeed, restricting the field content to the subspace defined by (3.8)

do not break the symmetry of (3.1), and can be considered as a consistent restriction of it.

To further study the theory is neater to work in the Unitary gauge, something elabo-

rated in the next section.

4. The field equations and the unitary gauge

The field equations associated with the variation with respect to h are

κ

∫

M4

〈

h−1δh
{(

Fh
)2

+ F2 +FhF −
3

4
[Ah −A,Ah −A] (Fh + F)

+
1

8
[Ah −A,Ah −A]2 +

1

2
(Ah −A)[Fh + F ,Ah −A])

}〉

, (4.1)

2Here ηAB = (−,+, +, +, +).
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while those associated with the connection A are

κ

∫

M4

〈

δA

(

(Ah −A)

(

Fh + 2F −
1

4
[Ah −A,Ah −A]

))

〉

− (h ↔ h−1) (4.2)

4.1 A relation between the field equations

The gauge invariance of the action allows to find off-shell identities between the field equa-

tions. To see this, instead of the field variation of (A, h), is possible to begin with the fields

(Ag, hg) = (g−1Ag + g−1dg, g−1hg) and consider the variational derivatives of the action

with respect to A, h and g. This process gives the same field equations for the fields (A,

h) plus an identically satisfied extra contribution.

So, with the following variations

δ (Ag) = δg−1Ag + g−1Aδg + δg−1dg + g−1dδg + g−1δAg

= g−1∇
(

δgg−1
)

g + g−1δAg, (4.3)

δh = g−1
[

h, δgg−1
]

g + g−1δhg, (4.4)

where ∇ = d + [A, ], three extra terms are obtained in the variational derivatives:
∫

〈

gδg−1hEh(A, h)h−1
〉

+
〈

δgg−1Eh(A, h)
〉

−
〈

δgg−1∇EA(A, h)
〉

. (4.5)

where Eh(A, h) are the field equations of h and EA(A, h) of A. Gauge invariance implies

that this relation is identically satisfied. Thus, it follows that

Eh(A, h) − hEh(A, h)h−1 = ∇EA(A, h) (4.6)

which means that the consistence condition, ∇EA(A, h), is trivially satisfied when the field

equations for h, Eh(A, h), holds. The last identity can be checked explicitly replacing the

field equations at both sides of it.

4.2 A decomposition for h

An arbitrary element of a semisimple Lie algebra can be written as the adjoint action of

the lie algebra on a Cartan subalgebra. So, the following local decomposition follows,

h = p−1ap. (4.7)

Using (4.7) the task of solving the field equations simplifies:
〈

h−1δhEh(A, h)
〉

=
〈

h−1
(

δp−1ap + p−1δap + p−1aδp
)

Eh(A, h)
〉

(4.8)

=
〈

(

h−1δp−1ph + p−1a−1δap + p−1δp
)

Eh(A, h)
〉

(4.9)

=
〈

p−1δp
(

−hEh(A, h)h−1 + Eh(A, h)
)〉

(4.10)

+
〈

a−1δapEh(A, h)p−1
〉

=
〈

a−1δaEh(B, a)
〉

+
〈

p−1δp∇EA(A, h)
〉

(4.11)

=
〈

a−1δaEh(B, a)
〉

+
〈

δpp−1∇̄EA(B, a)
〉

, (4.12)
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where B ≡ pAp−1 + pdp−1, ∇̄ = d + [B, ] and (4.6) was used to pass from (4.10) to (4.11).

On the other hand, the field equations for A can be rewritten as
〈

JABE
A(B, a)

〉

= 0. (4.13)

So, p is in fact pure gauge, since it is not determined by any field equation. Thus, one is

left with the milder task of solving the field equations in the so-called unitary gauge
〈

JABE
A(B, a)

〉

= 0
〈

CABE
h(B, a)

〉

= 0. (4.14)

where CAB are generators along a Cartan subalgebra.

Note that the above deduction considered that all the fields of the non-linear sigma

model where independently varied, while if the condition (

−φ01δφ01 + φ23δφ23 − φ45δφ45 = 0 (4.15)

=⇒ δφ45 =
−φ01δφ01 + φ23δφ23

φ45
(4.16)

=⇒ a−1δa = δφ01

(

J01 −
φ01

φ45
J45

)

+ δφ23

(

J23 +
φ23

φ45
J45

)

(4.17)

Now, the main problem to obtain Einstein gravity from the gWZW term is that equa-

tions quadratic in the curvature arise when the field equations associated to the non-linear

sigma model are taken in account [9, 10]. Thus, in configurations of constant φ, the sys-

tem become overconstrained and, for instance, the unique spherically symmetric solution

is flat space [24]. This quadratic constraint is proportional to a four form times εabcd, so it

appears from the field equation of the form
〈

J45E
h(B, a)

〉

. The restricted set of variations

defined by (4.17) imply that it disappear when the φ field take some trivial values.

The simplest case to examine the above construction explicitly is when ISO(4, 1) is

set as the gauge group, it is the subject of the next section.

5. The ISO(4,1) case

It is convenient to consider the iso(4, 1) case because it contains an abelian, invariant,

subalgebra. It allows to restrict the non-linear sigma model to take its values on this

subalgebra without affecting the local symmetry of the action. Decomposing the iso(4, 1)

algebra in its so(3, 1) irreducible parts the generators reads (Jab, Pc, Tc,W ), where (Jab, Pc)

span the iso(3, 1) subalgebra and (Jab, Tc) span the so(4, 1) subalgebra. The commutation

relations are

[Jab, Jcd] = −Jacηbd + Jbcηad − Jbdηac + Jadηbc, (5.1)

[Jab, Tc] = −Tbηac + Taηbc,

[Jab, Pc] = −Pbηac + Paηbc, (5.2)

[Ta, Pc] = −Wηac,

[Ta,W ] = Pa,

[Ta, Tb] = −Jab. (5.3)

a = 0, . . . , 3 ηab = (−,+,+,+, ) (5.4)

– 8 –
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and, correspondingly, the connection is written as

A =
1

2
ωabJab + caPa + baTa + ΦW , (5.5)

while the curvature reads

F =
1

2

(

Rab − babb
)

Jab+(dba + ωacbc)Ta+
(

dca + ωabcb + baΦ
)

Pa+(dΦ − baca)W. (5.6)

The simplest thing that one can do is to consider that the non-linear sigma takes its values

along the generators (P,W ):

h = exp(zAPA), PA = (Pa,W ), (5.7)

In this way the gWZW action takes the simple form

S(h,A) = 3κ

∫

M4

zAεABCDEΩBCΩDE , (5.8)

Ω =
1

2
ΩABJAB =

1

2

(

Rab − babb
)

Jab + (dba + ωacbc) Ta, (5.9)

which after imposing the gauge invariant constraint zAzA = m2, gives rise to standard

Einstein gravity. In the above action part of the original ISO(4, 1) symmetry is realized

in a trivial way and the remanent symmetry is just SO(4, 1).

Thus, we have exactly reproduced de CMMSW gauge theory of gravity. Too much

exactly; the main two drawbacks of the this theory are still present [7]. That is the necessity

to impose the gauge invariant constraint (3.8) by hand and the lack of a good reason to

consider a sector of the gauge connection to be invertible (the vielbein). Interestingly

enough the second of these issues is solved by a relation that looks exactly like a term

of (4.1) (see equation 14 in [7]), something that would deserve further consideration.
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